Numerical simulations for the Toda lattices Hamiltonian system: Higher order symplectic illustrative perspective
نویسندگان
چکیده
منابع مشابه
Multiple Hamiltonian Structure of Bogoyavlensky-toda Lattices
This paper is mainly a review of the multi–Hamiltonian nature of Toda and generalized Toda lattices corresponding to the classical simple Lie groups but it includes also some new results. The areas investigated include master symmetries, recursion operators, higher Poisson brackets, invariants and group symmetries for the systems. In addition to the positive hierarchy we also consider the negat...
متن کاملRegularization of Toda lattices by Hamiltonian reduction
The Toda lattice defined by the Hamiltonian H = 12 ∑n i=1 p 2 i + ∑n−1 i=1 νie qi−qi+1 with νi ∈ {±1}, which exhibits singular (blowing up) solutions if some of the νi = −1, can be viewed as the reduced system following from a symmetry reduction of a subsystem of the free particle moving on the group G = SL(n,RI ). The subsystem is T Ge, where Ge = N+AN− consists of the determinant one matrices...
متن کاملSymplectic Numerical Integrators in Constrained Hamiltonian Systems
Recent work reported in the literature suggests that for the long-time integration of Hamiltonian dynamical systems one should use methods that preserve the symplectic (or canonical) structure of the ow. Here we investigate the symplecticness of numerical integrators for constrained dynamics, such as occur in molecular dynamics when bond lengths are made rigid in order to overcome stepsize limi...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولOn Higher-order Semi-explicit Symplectic Partitioned Runge-kutta Methods for Constrained Hamiltonian Systems
In this paper we generalize the class of explicit partitioned Runge-Kutta (PRK) methods for separable Hamiltonian systems to systems with holonomic constraints. For a convenient analysis of such schemes, we rst generalize the backward error analysis for systems in I R m to systems on manifolds embedded in I R m. By applying this analysis to constrained PRK methods, we prove that such methods wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2019
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0215054